
Abstract. Researchers have been coupling geographic information systems
(GIS) data handling and processing capability to watershed and water-
quality models for many years. This capability is suited for the development
of databases appropriate for water modeling. However, it is rare for GIS to
provide direct inputs to the models. To demonstrate the logical procedure of
coupling GIS for model parameter extraction, we selected the Agricultural
Non-Point Source (AGNPS) pollution model. Investigators can generate
data layers at various resolutions and resample to pixel sizes to support
models at particular scales. We developed databases of elevation, land cover,
and soils at various resolutions in four watersheds. The ability to use
multiresolution databases for the generation of model parameters is
problematic for grid-based models. We used database development proce-
dures and observed the effects of resolution and resampling on GIS input
datasets and parameters generated from those inputs for AGNPS. Results
indicate that elevation values at specific points compare favorably between 3-
and 30-m raster datasets. Categorical data analysis indicates that land cover
classes vary significantly. Derived parameters parallel the results of the base
GIS datasets. Analysis of data resampled from 30-m to 60-, 120-, 210-, 240-,
480-, 960-, and 1920-m pixels indicates a general degradation of both
elevation and land cover correlations as resolution decreases. Initial
evaluation of model output values for soluble nitrogen and phosphorous
indicates similar degradation with resolution.
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1 Introduction

Watershed models of volume, sediment load, quality, and peak flow depend
heavily on geographic data sources, such as elevation, land cover, soils, and
precipitation, which are commonly provided in geographic information
systems (GIS). Researchers have been coupling GIS data handling and
processing capability to water models for many years (Olivieri et al. 1991;
Tim et al. 1992). However, it is still rare for GIS to provide direct inputs to
the models. A few software developments - such as the GIS Weasel, a U.S.
Geological Survey (USGS) computer program that interfaces GIS software
with several water models in the Modular Modeling System (Leavesley et al.
2002; Viger et al. 2002) - are designed specifically to generate the parameters
needed for operating specific models. The ability to use multiresolution
databases for the generation of parameters is also problematic for distrib-
uted-parameter, grid based models, and the results of models operating under
varying resolution conditions are still largely unexplored. Traditionally, these
models are exhaustive, that is, they depend on data covering the entire region
under study. This paper presents a discussion of database development
procedures and the effects of resolution and resampling on GIS input
datasets and parameters generated from those inputs for the Agricultural
Non-Point Source (AGNPS) pollution model. By resampling, we mean that a
data set at a resolution other than the one currently in use is to be analyzed.
The U.S. Department of Agriculture (USDA) developed AGNPS in

response to the complex problem of managing non-point sources of
pollution. AGNPS simulates the behavior of runoff, sediment, and nutrient
transport from watersheds that have agriculture as their primary use. The
model operates on a complete cell-by-cell basis and is a distributed
parameter, event-based model. AGNPS requires 22 input parameters,
including hydrologic data such as rainfall (amount and intensity), soils,
drainage, agricultural management, and other information. The AGNPS
model groups output parameters primarily by hydrology, sediment, and
chemical content (Young et al. 1994, 1995; Witte et al. 1995).
Watershed models are commonly dependent on elevation for terrain

morphology information and on land cover and soils for information on
resistance to flow and chemical composition. These datasets are a part of the
base data, which GIS are designed to process. Thus, the coupling of GIS
software for parameter extraction for water models is a logical procedure.
However, true integration of the modeling capabilities and GIS is rarely
achieved because of the different data models used.

2 Watershed models and scale

Previous researchers have investigated various effects on a given region of
spatial resampling and resolution on environmental model outputs. Vieux
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and Needham (1993) found that as grid-cell size increases model sediment
yield increases by as much as 32% and that coarser resolution is the most
important factor affecting these yields. Vieux (1993) assessed the effects of
digital elevation model (DEM) aggregation by resampling a 30-m grid to 90,
150, and 210 m grids and found that as cell size increases flow-path length
decreases (due to meander short-circuiting); area varies; and mean slope
tends to become flatter (decreases).
For a given region, Garbrecht and Martz (1994) investigated the impact

of DEM resolution on extracted drainage properties such as upstream
drainage areas and channel lengths. They analyzed the effects of increasing
DEM cell size ranging from 30 to 600 m (incremented in steps of 30 m). To
compare hypothetical drainage network configuration with various drain-
age properties, they calculated a grid coefficient representing the ratio of a
grid cell area to network reference area, which can be thought of as the
ratio of the cell size to basin area. They found that for grid coefficients less
than 0.01 (<1% of basin area), all extracted drainage properties are within
10% of the baseline reference values. For coefficients between 0.01 and
0.04, most of all drainage properties are within 10% of the reference values.
For coefficients less than 0.08, all properties are within 20%, of the values.
In addition, for coefficients greater than 0.08 properties increasingly diverge
from the values. Finally, their analysis suggests that a DEM should have a
grid cell area less than 5% of the basin area to reproduce drainage features
with an approximate accuracy of 10%.
Wolock and Price (1994) used TOPMODEL to study the effects of

topography on watershed hydrology. They showed that the map scale source
of the DEM has an effect on model prediction of the depth to the water table,
the ratio of overland flow to total flow, peak flow, and variance and skew of
predicted stream flow. For example, the mean depth to the water table
decreased with increasing coarseness of the data resolution and the maximum
daily flow increased with increasing coarseness of the resolution. Hodgson
(1995) demonstrated that the slope/aspect angle derived from the neighboring
elevation points best depicts the surface orientation for a larger cell – either
1.6 times larger for the four nearest cells in a three by three window or 2.0
times larger for the eight nearest cells in a three by three window.
Because model prediction based on input datasets with low spatial

resolution may not accurately reflect solute transport processes occurring in
situ, Inskeep et al. (1996) compared observed and predicted data using two
transport models with different levels of process description, and using model
input parameters obtained from different resolutions. They showed that both
models performed adequately with high-resolution model inputs (defined
variably by data and ‘‘cases’’) and that predictions using the Chemical
Movement in Layered Soils (CMLS) model were less sensitive to data input
resolution than the Leaching and Chemistry Estimation model, due in part to
the fact that CMLS provides a simplified description of transport processes.

3 Objectives

Our development of AGNPS databases relies on a combination of
procedures and macros to use commercial GIS software (specifically,
ERDAS Imagine) to generate the parameters for AGNPS and a set of
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object-oriented code specifically designed to support this effort (Finn et al.
2002). This paper examines the problems of generating databases at multiple
resolutions to support an analysis of the effects on the input data and the
AGNPS parameters generated from those data. The paper thus provides an
assessment of the effects of resolution and resampling. The next section of the
paper discusses our approach to the creation of the databases. Section 5
presents the study areas and data sources, and Section 6 documents the
methods used for database development. Section 7 provides a tabulation and
comparison of statistical results, including differences in area tabulations and
values at specific locations resulting from resolution differences. A final
section draws conclusions from this work.

4 Approach

We used USGS 30-m DEMs from the National Elevation Dataset (NED)
(Gesch et al. 2002; USGS 2002a) and land cover from the National Land
Cover Data (NLCD) (Vogelmann et al. 2001; USGS 2002b) as the base for
the extraction processes. The NLCD information was augmented with land
cover extracted from Landsat Thematic Mapper (TM) data acquired in 1997
and 2001. In addition, we acquired high-resolution (3-m) elevation and land
cover data to help determine resolution effects. We generated the soil
databases from USDA soil surveys by scanning mylar separates of soil
polygons, then rectifying, vectorizing, and tagging the resulting digital data.
The soil data from vector format were resampled to the 30-m and 3-m base
resolution grids to match land cover and elevation datasets. To assess the
effects of resolution and resampling on model inputs, we resampled the 30-m
raster data to 60-, 120-, 210- (approximately 10 acres, commonly used by the
USDA), 240-, 480-, 960-, and 1,920-m cells.

5 Study areas and data sources

The fourwatersheds examined includeLittleRiver andPiscolaCreek,Georgia;
Sugar Creek, Indiana; and EL68D Wasteway, Washington (Table 1). Little

Table 1. Study areas

Watershed Counties Drainage Hectares Approximate

center

Little River,

Georgia

Turner, Worth,

Tifton

Into the Withlacoochee

River, then the Suwannee

44,414 30� 49¢ 00¢¢ N
83� 39¢ 00¢¢ W

Piscola Creek,

Georgia

Brooks, Thomas Into the Withlacoochee

River, then the Suwannee

33,242 30� 46¢ 00¢¢ N
83� 38¢ 00¢¢ W

Sugar Creek,

Indiana

Henry, Hancock,

Madison

Into the Driftwood River,

then the East Fork of

the White

23,976 39� 55¢ 00¢¢ N
85� 43¢ 00¢¢ W

EL68D

Wasteway,

Washington

Adams, Franklin Into the Potholes Canal,

then the Scooteney

Reservoir

37,719 46� 49¢ 11¢¢ N
119� 02¢ 13¢¢ W

292 E. Lynn Usery et al.



River, Sugar Creek, and EL68D Wasteway were selected because they are
National Water-Quality Assessment (NAWQA) Program sites where USGS
personnel do periodic sampling. We added Piscola Creek because of previous
work in that watershed and data availability, including 5 years of continuous
water-quality samples at nine stations. In this paper we focus on results from
the Little River and Piscola Creek, Georgia watersheds (Fig. 1).

5.1 Watershed boundaries

We used two sets of watershed boundaries for this study. The USGS collects
and assesses information on water chemistry, hydrology, land use, and
stream habitat in more than 50 major rivers across the nation as a part of the
NAWQA Program and has established boundaries for these watersheds
(Hamilton 2002). Part of the program is concerned with water quality and
non-point sources in agricultural watersheds (Berndt et al. 1998; Gilliom
et al. 2002); thus, one of the boundary sets used was the NAWQA watershed
boundaries. Because the NAWQA boundary does not usually match the flow
according to the DEMs, because of resolution and accuracy issues, we used a
second set of watershed boundaries. This second set was extracted directly
from the DEMs using the GIS Weasel (described earlier). Because the DEM
determines the resulting GIS Weasel boundary, this boundary is consistent
with slope and other data derived from the DEM. Table 2 contains a
comparison of watershed areas resulting from the NAWQA and DEM-
extracted boundaries at various resolutions for Little River, Georgia and a
calculation of the grid coefficients based on Garbrecht and Martz (1994) for
the Little River basin area. Figure 2 provides a comparison of the two
boundaries at 30-m resolution.

Fig. 1. Georgia study areas are the

Little River and Piscola Creek

watersheds
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6 Methods of database development

6.1 Land cover

Two sources of land cover were developed for each watershed: NLCD with
30-m pixels and classification at 3-m pixels from high-resolution panchro-
matic images utilizing the Anderson classification scheme (Anderson et al.
1976). In addition, a classification at 30-m pixels from recent TM images
supported by field reconnaissance was employed utilizing a specific scheme

Table 2. Comparison of watershed areas and grid coefficientsa

Resolution

(m)

NAWQA

(ha)

GIS

Weasel

(ha)

Difference Grid

coefficient

NAWQA

Grid

coefficient

Weasel

30 33423.8 34885.8 1462.0 0.0009 0.0009

60 33702.5 35089.2 1386.7 0.0018 0.0017

120 34076.2 35493.1 1416.9 0.0035 0.0034

210 34631.7 35986.1 1354.4 0.0061 0.0058

240 34859.5 36241.9 1382.4 0.0069 0.0066

480 36426.2 37739.5 1313.3 0.0132 0.0127

960 39444.5 40458.2 1013.7 0.0243 0.0237

1920 45711.4 46418.9 707.5 0.0420 0.0414

aAs defined by Garbrecht and Martz (1994)

Fig. 2. Comparison of

NAWQA and GIS Weasel

watershed boundaries for Little

River, Georgia at 30-m

resolution
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developed for Piscola Creek and Little River by the USDA Agricultural
Research Service (ARS) (Table 3). Accuracies of classification for the 30-m
and 3-m data match the NLCD at about 90 %, and absolute classification
accuracy in the Little River watershed was computed to be 90 % by
comparison with field-sampled sub watershed areas for which wall-to-wall
categories are known.

6.2 Elevation

Elevations for the watersheds were acquired from the USGS NED. These
data are resampled to a 30-m post spacing (pixel size) and achieve accuracies
of ± 3-m vertical root-mean-square error (RMSE) in all watersheds. Higher
resolution elevation data with 3-m post spacing were generated by a
combination of automated correlation of high-resolution panchromatic
stereo images and interactive editing and correction. Accuracies of 1-m
vertical RMSE were attained in all watersheds for the high-resolution data.

6.3 Soils

Soil data were acquired directly from the USDA for Little River and Piscola
Creek as vector polygons. For Sugar Creek and EL68D Wasteway, soil data
were generated by raster scanning the black-line Mylar separates of the
USDA soil surveys and converting these to vector polygons. The polygons
were then tagged with attributes for soil types and other information from

Table 3. Land cover categories

NLCD classification

categories

ARS specific land

cover categories

Anderson land

cover categories

Low-intensity residential Urban Urban (unclassified)

High-intensity residential Pecan Transportation/ Utilities

Commercial/ Industrial/

Transportation

Mature deciduous Unknown orchards

Urban/ Recreational grasses Mature planted pine Mature deciduous

Orchards Mixed deciduous / Pine Mature pine

Deciduous forest Young planted pine Young pine

Evergreen forest Water Forest (unclassified)

Mixed forest Wetland Mixed forest

Shrub land Forested wetland Water (unclassified)

Open water Crop Reservoirs

Woody wetlands Disturbed or harvested land Wetlands

Herbaceous wetlands Urban Forested wetlands

Grasslands herbaceous Pecan Crops (unclassified)

Pasture/ Hay Mature deciduous Mixed grasses

Row crops Corn

Small grain Cotton

Transitional Peanuts

Fallow Unclassified

Barren land

Disturbed or harvested land
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the soil surveys. The polygon data were resampled to 3- and 30-m grids to
match the elevation and land cover datasets.

6.4 Precipitation

Precipitation data to support the AGNPS model were obtained from the
National Weather Service in each of the watershed areas. This dataset is not
a spatially distributed parameter for AGNPS. Since AGNPS is event based,
a single value is applied to the entire watershed.

7 Resampling to coarser resolutions

The 3-m and 30-m datasets provide independent collections of input data for
the parameter-generation process of AGNPS and allow examination of the
effects of resolution on both input and output parameters. We also
resampled the GIS datasets to determine the effects of resampling. In the
case of land cover and soils, the resampling was performed with a nearest
neighbor method consistent with the categorical scaling of the data. For
elevation, we resampled using the bilinear interpolation method (ERDAS
1999, p 367) to achieve the lower data resolutions. From the resamplings of
the 30-m data to 60-, 120-, 210-, 240-, 480-, 960-, and 1920-m cells,
parameters were generated.

8 Results

Using the various watersheds, input data layers, and resolutions, our analysis
can be divided into two areas: 1) effects of resolution, and 2) effects of
resampling. We used independent collections of elevation and land cover to
test the effects of resolution, and we resampled 30-m data for elevation, land
cover, and soils to test the effects of resampling.

8.1 Effects of resolution

The independent data collections at 3 m and 30 m for elevation and land
cover allow an assessment of the effects of resolution on elevation values at
specific locations, on land cover types in specific locations, and on the
resulting values of the input parameters for AGNPS. To test these effects, we
selected 500 points randomly over each watershed and extracted the values at
each point in both the 3- and 30-m data. Table 4 provides results for 20
representative points of the 500 points with corresponding 3- and 30-m
elevation and land cover values for the Little River watershed. The 3-m land
cover was recoded (generalized) from the Anderson classification to the
ARS-specific classification to allow comparison.
Using the values over the 500 points for Little River, we determined the

correlation between elevation values. Elevations resulted in a linear (Pearson
product moment) correlation coefficient (r) of 0.90 between the 3- and 30-m
resolution data. This value of r is remarkable considering that these were not
resampled versions of the same dataset but were independent collections. We
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used multinomial regression to compare the land cover classification results
and obtained no significant correlation. McFadden’s coefficient of determi-
nation (pseudo R2) value (Long 1997) for this comparison yielded a value of
0.139, which implies essentially no correlation. The percentage of the 500
random points that show the same land cover category at the 3 and 30 m
resolutions is only 21.4, again indicating little correlation across resolutions.
These results indicate that from two independent collections of elevation and
land cover with an order of magnitude difference in linear resolution,
common elevation values result at randomly sampled locations with no
significant loss of information resulting from resolution difference, but land
cover classes do not correspond across resolutions. This result may be a
function of the resampling methods used: bilinear interpolation for elevation
and nearest neighbor for land cover.

8.2 Effects of resampling

We evaluated resampling effects on the databases in a variety of ways,
including comparing the change in area of specific land cover categories
across resolution and comparison of the elevation values at specific locations

Table 4. Sampling of points for land cover and elevation comparisons for Little River, GA,

(land cover classification for the 3-m data were recoded from the Anderson classification to the

ARS-specific classification to allow for comparison)

Easting northing 3-m LC 30-m LC 3-m Elev 30-m Elev

239589 3504260 Crop Mature planted pine 119 122

241209 3503180 Crop Crop 125 124

256449 3486470 Urban Crop 102 103

252039 3491360 Mature deciduous Wetland 84 85

240369 3516350 Mixed deciduous/

Pine

Mature planted pine 132 132

253959 3486830 Urban Crop 90 85

253539 3496400 Urban Crop 111 111

246369 3497360 Mixed deciduous/

Pine

Wetland 95 94

247779 3512330 Urban Urban 130 130

256179 3491270 Crop Crop 97 97

244239 3498170 Mixed deciduous/

Pine

Mature planted pine 106 106

238449 3515090 Young planted

pine

Mature planted pine 132 130

254589 3486920 Mature planted

pine

Crop 84 85

244749 3504560 Crop Crop 121 119

250929 3495140 Crop Crop 107 100

247719 3498890 Crop Crop 115 112

244359 3507260 Crop Disturbed or

harvested land

116 115

255579 3491240 Mixed deciduous/

Pine

Wetland 95 94

252339 3500660 Crop Crop 113 115

247719 3508160 Crop Crop 117 116
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in datasets of different resolution. Comparing the coarser resolution datasets
shows the effects of resampling. Figure 3 shows the effects of resampling on
raster resolution for a generalized land cover classification in the Little River
watershed. Table 5 shows a comparison of the total areas of land cover in
Little River when 30-m data are resampled to lower resolutions using the
same generalized land cover classification as shown in Fig. 3. The values in
the table are percentages of the 30-m land cover areas. This demonstrates
that as the data are resampled to consecutively lower resolutions, the land
cover categories decrease in accuracy (increase in variability) when measured
as a function of the percentage of the 30-m categories. We obtained similar
results in all watersheds.

Fig. 3. Effects of resampling on raster resolution on a generalized land cover classification in the

Little River, Georgia watershed

Table 5. Comparison of land cover values across resamplings for Little River. Values are

percentages of 30-m land cover category areas. (Based on a generalized land cover classification)

60 m 120 m 210 m 240 m 480 m 960 m 1,920 m

Water 100.12 94.50 121.23 97.04 98.56 65.71 0.00

Urban 104.04 94.34 100.28 76.73 68.51 35.97 89.98

Transitional 100.54 96.96 92.18 90.15 81.95 69.34 90.20

Deciduous 103.35 101.65 102.12 94.36 120.21 156.28 97.74

Pine 100.11 98.48 97.90 96.80 86.37 69.99 48.35

Mixed 98.18 101.29 94.74 98.41 86.33 65.95 148.47

Crop 98.99 97.72 95.42 95.80 91.40 88.33 74.46

Wetlands 99.50 100.27 99.98 102.78 101.91 105.47 82.45
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Another method to compare the effects of resampling on data values is to
compare a single profile of values across the watershed at various resampling
sizes. Elevation values along the line across the Little River watershed
depicted in Fig. 4 are shown in Fig. 5. As with the resolution analysis above,
the profiles indicate good correspondence of elevation values with resam-
pling; however, large down-sampling from 30 to 960 and 1,920 m degrades
the data beyond practical use. This degradation is obvious from Fig. 5 and is
consistent with a visual interpretation of resampling effects from Fig. 3.

Fig. 4. Profile transverse across Little River

watershed (elevation profiles are shown in

Fig. 5)

Fig. 5. Spatial resampling effects shown by an elevation profile
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As in the resolution analysis, elevation values for each resampled cell size
(60, 120, 210, etc.) over a 500-point random sample were regressed against the
elevation value at the corresponding point in the original 30-m grid. Figure 6
shows the effects of resampling elevation data for Little River as measured by
linear regression; specifically the r-value decreases with increasing pixel size.
Figure 6 shows similar effects for Piscola Creek. Note in Fig. 6 (b), the lower
accuracy for the 210 m compared with the 240 m. An understanding of the
resampling methodology may explain this apparent anomaly from the trend
since bilinear resampling uses four surrounding pixels; even numbers of four
pixels (for example, 30 m to 60 m to 120 m to 240 m) should show consistent
results. The 210 m is not an even multiple of four from the 30-m original data
and thus yields lower accuracy than the 240 m.
In addition to analyzing the resampling of the GIS input datasets

(elevation and land cover), we also examined the effects of resampling on
derived input parameters for AGNPS. We limit our discussion to two
example derived-parameters: land slope, a continuous variable, and flow
direction, a discrete variable. The parameters were derived from the 30-m

Little River watershed
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Piscola Creek watershed
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Fig. 6. Resample correlation coefficient (r) for elevation. a Little River, b Piscola Creek
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elevation data and then resampled to the various resolutions. Figures 7
shows the effects of resampling the 30-m land slope data for various
resolutions from Little River and Piscola Creek as measured by linear
regression. For the random set of 500 test points, land slope derived from the
30-m data was compared with the corresponding value in the resampled
data. The results show a continual degradation of r as cell sizes become
larger. Figure 8 shows the effects of resampling on the flow direction data for
Little River as measured by multinominal regression between 30-m and
resampled datasets (McFadden’s pseudo R2 value). Figure 8 shows the same
for Piscola Creek. Note that, in Fig. 8, the 210-m value reflects the effect of
the bilinear resampling discussed in the previous paragraph. Figure 8
demonstrates that there is very little correlation (30- to 60-m case) essentially
to zero correlation (30- to 1,920-m case) between categories after resampling
of derived input parameters.
Preliminary investigation of resampling phenomena verses AGNPS model

output parameters for two of 51 output parameters shows that there is very
little to zero correlation between model output at various cell sizes compared

Little River watershed
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Piscola Creek watershed
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Fig. 7. Resample correlation coefficient (r) for elevation: a Little River, b Piscola Creek
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to the corresponding 30-m output. For this preliminary investigation, we
used soluble nitrogen and soluble phosphorous concentration (in parts per
million) output parameters and calculated their correlation coefficient (r)
over a 500-point random sample for Little River watershed (Fig. 9). This
seems to attribute all the change in output parameters directly to the effects
of resampling on the input parameters because no other parameters were
modified. Further analysis of the output parameters as a function of the
spatial input is the subject of future research.
This works corroborates Inskeep et al. (1996) who showed that model

predictions based on input datasets with low spatial resolution may not
accurately reflect physical processes occurring in the environment. Our
findings generally corroborate Worlock’s and Price’s (1994) findings that data
resolution has an effect on model prediction for a variety of watershed related
parameters. The results of our investigation generally correlate to Garbrecht’s
and Martz’ (1994) findings when calculating their dimensionless grid
coefficient, representing the ratio of grid area to basin area, and that a grid
area should be less than 5% of the basin area to reproduce accurate features.

Little River watershed
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Fig. 8. Resample McFadden’s coefficient of determination (pseudo R2) for flow direction: a

Little River, b Piscola Creek
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However, our work is of much higher resolution and only after gross
resampling of 30-m data to 60, 120, 210, etc) do our datasets reach the
critical threshold of 0.01 as described by Garbrecht and Martz (1994). Thus,
our findings apply more broadly to high-resolution (3- and 30-m) cells in
large watersheds averaging approximately 35,000 ha. In addition, our results
are consistent with Vieux and Needham (1993) results showing the variance
in yield that they experienced is similar in magnitude to the variance we show
when resampling land cover data to lower resolution cell sizes. Our results
uniquely show the effects of spatial resolution by using two independent
collections of data, at 3 m and 30 m for both elevation and land cover.

9 Conclusions

GIS provide excellent data handling capabilities for the development of
databases appropriate for watershed and water-quality modeling. We
developed databases of elevation, land cover, and soils at various resolutions
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Fig. 9. Resample correlation coefficient (r) between model output of 30-m cell size compared to

other cell sizes for Little River of: a soluble nitrogen content (ppm), and b soluble phosphorous

content (ppm)
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in four different watersheds. The database development involved significant
processing but resulted in datasets from which parameters for AGNPS were
generated directly. The datasets and derived parameters provide a basis for
analyzing the effects of both resolution and resampling. Techniques used
included comparison of values at specific points across multiple datasets,
comparison of total areas, and statistical analysis using correlation methods.
Results of this analysis indicate that elevation values at specific points

compare favorably (r ¼ 0.90) between 3- and 30-m post spacing datasets.
When the 30-m data are resampled to 60, 120, 210, 240, and 480 m, a single
profile across the watershed retains its shape, but at resampling to 960 and
1,920 m, the profile ceases to be the same. Comparison at random sample
points of specific elevation values across various resamplings shows a
continual degradation in correspondence to the original 30-m elevations.
Resolution and resampling cause significant changes in land cover values,

perhaps because of the categorical scaling of the data. Comparison of
independent collections of the same land cover categories at 3 and 30 m show
significant differences (pseudo R2 ¼ 0.14) in assigned covers at random test
points. Resampling to coarser resolutions also degrades land cover, and there
is a significant difference (Table 4) in values at sample points. Similarly, total
area calculations for each land cover in a particular watershed show
significant differences (Table 5), indicating that the resampling is degrading
the original data.
Certain derived parameters, such as land slope, parallel the results of the

GIS datasets that are their base. Degradation or change of values increases
as resolution becomes lower and more cells are combined to create a single
output value. We also examined AGNPS model output for nitrogen and
phosphorous. This examination showed that the quality of AGNPS model
output, soluble nitrogen and phosphorous, also degrade with resolution.
Further analysis of all model output is underway.
As a general conclusion, our analysis shows that data should be collected

at the desired resolution since resampling, even for continuous datasets, will
degrade or modify the original data values. This result holds true for
originally collected data, such as elevation and land cover, derived data, such
as land slope and flow direction, and model outputs, nitrogen and
phosphorous.
Original results for thiswork include the examination of resolution effects for

independent collection of elevation and land cover data. Elevation compares
well across resolutions of 3m and 30mwith 90% correlation. Land cover does
not compare well. These results may reflect our abilities to create better
continuous surfaces (elevation) at different resolutions than discrete surfaces
(land cover). This work indicates a threshold between 480 m and 960 m cells at
which resampling completely degrades the data for use in the AGNPS model.
This threshold may result from basic model assumptions used in AGNPS,
which are sensitive to the area and to an aggregation spatial maximum.
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